

Overview of summer research on Emulation project

Contents:

I. Introduction
II. Pre-work/ Initial-Setup
III. Project Work
IV. Testing with Emulation Assistant

Purpose of the document:

The purpose of the document is to give a detailed overview of the summer research project on
Emulation. The summer project focused on creating hundreds of automation scripts to evaluate
emulation assistant. Many interesting details were gathered during the process of scripting. This
document serves as a complete reference material to create legacy executable.

I. Introduction

Digital objects are vulnerable to software or hardware obsolescence and physical degradation.
These digital objects have huge amount of information and cultural heritage that will be lost if
the objects are not preserved. Rework on all the available digital objects to make them run on
present and future systems demands high costs and time. The extensive variety of digital objects
makes preservation a challenging task. The digital objects vary in a) type of software that used to
write the program to run it, b) type of hardware that runs the software, c) type of formatting, for
example, the object can be a multimedia application or may contain simple text or PDF files. To
open these objects, additional software is needed to be installed before we use the object, d)
special characteristics like few objects are written in international language or made for a certain
set of population etc.

While preserving the digital objects, we must also bear in mind that the future user should be
able to use them and understand the information present on them. We ascertain that the future
systems will be more sophisticated than the present ones. We no longer use the DOS mode of
Microsoft Operating Systems and older versions of 16-bit Windows have become obsolete. We
now use a 64-bit version of Windows which will make 32-bit obsolete in not much time. The
future systems will have more enhanced software and hardware features and the existing mouse
and key stoke interfaces may no longer be in use. Also the future user will be unaware of any
technology used currently. It will be a difficult task for the user to learn the older technologies
and access the digital objects.

During the summer, we worked on writing helper scripts that can automate the process of
installing the software that will enable future user to access the digital object with minimum or
no knowledge of existing systems. We used emulation, one of the two widely used strategies that
can render the digital object in its original form on the emulated platform. The basic approach
was to take bunch of ISOs, mount each of them on the virtual machine and follow the entire
procedure of each installation manually. Finally, write scripts capturing the procedure and
automating each installation. Every step had its own complications and handling them gave out
some interesting results. The rest of the document talks about the research in more detail.

II. Pre-work/ Initial Setup:

Close to a thousand of digital objects were taken to serve the purpose of research. Most of these
digital objects were available on CD-ROMs. They were either Government or Commercial,
English or International. The information on the CD-ROMs was vast that contained studies on
art, culture, demography etc. The objects were picked from the library reserves randomly. Not
all the objects might be useful, or they might not run fine, or they might not have upgraded with
latest information. We leave all these to the library administrators. The digital objects were
converted to ISO image and reserved to begin experimentation. An ISO image is a CD-ROM or

DVD image saved in ISO-9660 format that can be used as a virtual copy of its original disk. The
ISOs are not opened, but they are mounted.

VMware Server/Workstation was setup to virtually create the original environment in order to
run the CD-ROM images. VMware simulates the set of hardware that is required by the guest
operating system. It supports list of hardware devices like hard disk, network adapter, CD/DVD
drive etc., which enables bridging with the host operating system on which VMware runs. ISOs
can be mounted on CD/DVD drive and this will work similar as you try to run or open a CD-
ROM on an original system. Different operating systems are required to support the software on
the CD-ROMs. Few needed Windows or Linux and the other needed Mac. Also they operated on
various versions of Windows Operating System from Windows 3.1 to Windows XP and these
images were our prime focus.

Choosing a virtual machine that can support maximum digital objects was the next task. We
came across few ISOs that ran on a 16- bit Windows machine and few on 32-bit Windows. Few
needed DOS-mode of Windows to function properly, while some needed graphics and screen
resolutions from earlier versions of Windows. Microsoft Windows XP Professional (32-bit) is a
best-suited operating system that can meet the requirements of many digital images. We chose
Windows XP for two reasons primarily. First, most of the ISOs used software and hardware that
was supported by Windows XP. Second, Windows XP is backward compatible and it can run a
program in compatibility mode of 16-bit Windows. It also provides settings to run the program in
display with 256 colors or with the screen resolution of 640 x 480.

The helper scripts needed a scripting tool to automate each installation. AutoIt, a freeware GUI
Scripting language for Microsoft Windows was used for this purpose. It is a BASIC-like
scripting language that facilitates automating the user tasks by capturing the keystrokes, mouse
movements or window controls. AutoIt was installed on the Windows XP Professional virtual
machine on VMware Server/Workstation and stored on the baseline of the virtual machine by
taking a snapshot. This gives a fully-fledged initial setup to perform the research.

Figure 1: The initial setup to create automation scripts

Host Operating System

Virtualization Tool

Virtual Machine or Guest
OS

Scripting Tool

Windows	
 7	
 (64-­‐bit)/	
 Linux	

VMware	
 Server/Worksta=on	

Windows	
 XP	
 Professional	
 (32-­‐
bit)	

AutoIt	
 	

III. Project Work:

As a start up for the project, a set of about 100 ISOs were taken from the reserve and then
completed scripting for about 400 ISOs. Each ISO was mounted on the Windows XP virtual
machine and a script was written to automate its installation. We divide our research into
following stages:

1. Exploring the ISO image.
2. Creating Automation Scripts
3. Analysis – new baseline
4. Results

These stages will serve as a guide to write helper applications in evaluating the assisted
emulation.

1. Exploring the ISO image

Initially, each mounted ISO image was examined to gather various details. The details include
the type of data present on the ISO image, whether the software is an executable or some other
application such as media or text file, the procedure to install the software, is the software
dependent on any other application or ISO image(s), does it require any changes in system
configuration settings etc. The README files on the image give a detailed summary on
complete method of installation and list of directories created (if any) to access the installed
product. But not all the ISOs had README files on them. In such case, we searched for the path
for the right executable on the ISO and executed it manually by following the instructions that
appeared on the screen. It was not very difficult to find the installed directory that had the final
product as many installations either opened those directories or prompted to enter the directory
name while installing or the common location was C:\(Program Files) or they opened the
installed files automatically. After a successful installation, we checked if the executable
rendered the complete information and that no components or data on the file were missing.

We found that many of the ISOs would not run properly due to many reasons. Dependency on
additional software that was not installed on the Virtual Machine hindered the execution of the
ISO. Few ISOs had the additional software included with the package and either installed them
in the process of the execution or needed a separate installation. The ISOs that did not include
the additional software raised a set of challenges in finding out the appropriate software needed
to run the program. Neither had we found any README file or any other documentation that
gave any related information. For International software, the README file was in a foreign
language that needed to be translated in order to understand its content. We explored ways to
deal with such exceptions.

Though few programs were installed successfully, but the data was still missing on them. For
example, an ISO had PDF file that needed a QuickTime plugin to run its media files. If any of
the two software, PDF or QuickTime, was found missing, then the installation became useless.
For most cases, we found the software by looking at the extensions of the files. But finding the

name of the right software was not good enough, as the software came in various versions, a
newer upgrading its older version. We tried multiple versions randomly that we thought would
be best to run the program. Yet there were few ISOs that would not start installation unless they
found the required software on the machine and threw an error message denoting the absence of
the software. Few messages were hard to decipher and made it trying to understand if the
message was about missing software or any other system configuration files. For example, we
encountered a message “mtb30run.exe missing”. Mtb30run is multimedia toolbox software and
is very hard to find. We paired up the ISOs with required additional software with the ISO in the
same directory and mounted each ISO on separate drives of the Virtual Machine and created a
script accordingly that would install the additional software first followed by the actual software.

There were a bunch of programs in International languages. These programs would open files
displaying contents that were not in a readable format. They needed Windows to run the
particular Language option to make sense in the displayed content. There is a provision on
Windows XP to select the Unicode of the required language. Follow the subsequent steps to
operate Windows in other foreign languages:

a) Find the suitable language. This can be found in a separate documentation that is
maintained with the ISO while converting the CD-ROM to its equivalent ISO image.

b) Install East Asian Languages to support programs in Chinese, Japanese, Korean and other
Asian languages. Other languages like German, French did not need any additional
package.

c) Go to Startà Control Panel à Regional and Language options à Languages à Check
“Install files for East Asian Languages” and click OK

d) It then prompts to insert the Windows XP Professional disk. Insert the follow the
instructions.

e) Reboot the machine after you have finished installation.
f) After rebooting, go to Regional and Language options à Regional Options and you can

select the required language and it will work.

Few programs needed 3MB of virtual memory on Windows XP. To achieve this follow the
following procedure:

a) Control Panel à System à Advanced à (performance) Settings à Performance
Options à Advanced à click Change à check No paging file à click Set à click OK

b) Restart the machine.

Few needed to set Display settings for 16 bit color quality. Below are the steps to do this:

a) Go to Control Panel à Display à Settings à Color Quality à select Medium (16 bit)
à click Apply à Monitor Settings à Click Yes à click Ok.

Few programs were developed in DOS mode during the era of early Windows operating system.
Windows XP support for compatibility mode helped us to run these programs. To do this,

a) Right Click on the file that you wish to open in compatibility mode and click Properties.
b) Go to Compatibility option and check “Run this Program in compatibility mode for:” and

select the right option from the provided list of operating systems.
c) Click Apply and then OK.

In order to run in DOS mode, few ISOs needed to allocate some value to extended memory
(XMS).

a) Go to C:\Windows\system32, right click on command.com and go to Propertiesà
Memory.

b) Set Expanded (EMS) memory and Extended (XMS) memory to 16384.
c) Go to Misc and uncheck Alt+Space, Alt+Esc and Alt+Enter and Click Ok
d) Run the program from command.com prompt.

Few software came in set of multiple discs. The set contained independent and dependent discs.
The independent discs where easy to handle as they could be run individually. For the dependent
scripts, the program on one disk required a file present on some other disc. We tested these
programs by mounting all the ISOs in the set on multiple drives simultaneously so that the
program on one ISO could access the required file from other ISO mounted on one of the other
drives. Few ISOs were very friendly, they auto ran and did not need any kind of scripting. Yet
we explored those ISOs to check if no component was missing.

Exploring the ISOs demonstrated the various requirements of the programs, special cases,
challenges in handling these special cases and ways to resolve the cases and successfully install
the programs. It is evident that the number of special cases will rise with more number of ISOs.
Clearly, the variant nature of the software will demand for knowledge of these obsolete systems
and it is important that we explore the ISOs to gather as much information as possible to
preserve the information on the digital objects.

2. Creating Automation Scripts – the programming phase.

For each ISO, having known about its requirements, we then began writing scripts that could
automate its installation. There are many Scripting tools available that can create automation
scripts. We chose AutoIt for it is a freeware tool and has special control features that can make
the scripts more reliable. Its BASIC-like structure is easy to learn and write scripts (*.au3 files)
for complicated installations. Tutorial on AutoIt can be found at
http://www.autoitscript.com/autoit3/docs/. An example of AutoIt script is as follows:

Example.au3
 Run("D:\SETUP.EXE")
 WinWait("Setup")
 ControlClick("Setup", "", "Button1")
 WinWait("", "successfully installed")
 ControlClick("", "successfully installed", "Button1", "", 2)
 WinWait("CD-ROM Delos")

ControlListView("CD-ROM Delos", "", "SysListView321", "Select", ControlListView
 ("CD-ROM Delos", "", "SysListView321", "FindItem", "Delos"))

 ControlSend("CD-ROM Delos", "", "SysListView321", "!{ENTER}")
 WinWait("Delos Properties", "Shortcut")
 WinClose("CD-ROM Delos")
 ControlCommand("Delos Properties", "Shortcut", "SysTabControl321", "TabRight")
 WinWait("Delos Properties", "Compatibility")
 SendKeepActive("Delos Properties", "Compatibility")
 Send("{TAB}{SPACE}")
 ControlClick("Delos Properties", "Compatibility", "Button11")
 ControlClick("Delos Properties", "Compatibility", "Button10")
 Run("D:\WIN\DELOS.EXE")

AutoIt has a special feature that can convert its au3 file to an executable (.exe) file that can run
the script on any machine that does not have AutoIt installed on it. These executables were
placed along with the respective ISOs in each ISO directory and the emulation assistant ran these
executables to automatically install the software.

Our script catalogue also includes the scripts that automated all the special cases that are
discussed in the Exploring the ISO section. With autorun software, we saw that the autorun.inf
programs were not very consistent, at times they ran and at times they broke. Also the emulation
assistant needed an executable for each ISO to install the program on the Virtual Machine or else
it threw an error that it did not find the program that needs to be run. Therefore, we wrote small
scripts that close all the windows which open up when the ISO is mounted and then run the
actual executable on the ISO image instead of playing the autorun file.

An au3 script uses window name and the commands that are passed to the window to automate
the process of installation. Most of the commands are passed through key strokes; the shortcut
keys enable us move through the installation smoothly. But international software have the
window names in their native language. These names are hard to capture and so are the
commands that do not take the shortcut keys made for English Unicode. In this scenario, we used
AutoIt Window Info feature that captured the entire window information. More sophisticated
control commands like ControlSend are more reliable than rudimentary commands like Send.

Few installations took long time to complete, for example, in case of restarting the machine. In
such case, the user may not be sure if the installation is complete or still in progress. The user
intervention at this point can hinder the execution of au3 script. To avoid this confusion, we

came up with two ways. First, to freeze the Windows Desktop until the script finishes. Second,
provide a status bar showing the progress of the script. We modified our scripts with the second
option.

The scripting phase of the research dealt more with creating scripts that could not only automate
the process of installation but also handle any type of exception that occurred while installing the
software. Many of these complicated scripts that managed the intricate requirements of the
software have been found to be very useful and re-used in several installation scripts. We started
with simple scripts that made simple installations and then moved to writing erudite scripts that
made complex installations. We also maintained a detailed documentation containing the
installation notes for each ISO. The following section will deal with the detailed analysis of the
research.

3. Detailed Analysis

Having created ample amount of scripts, we reviewed all the scripts to analyze what made the
automation of the install procedure a hard task and what was done to make the process easy so
that the user can read, understand and use the data in the future. We also tested each script on the
Emulation Assistant and the evaluation is discussed in the Section IV. To address the concerns
about the automation of the installation, we discuss the following aspects in this section:

a) Characteristics of ISOs
b) Software Dependence
c) Common Scripts and ISOs
d) Non-working/Bad ISOs
e) Cost in terms of Time
f) New Configuration
g) New Storage

a) Characteristics of ISOs

The information on the digital object is what that makes the digital object distinctive. The
information can be in different languages, can belong to a different genre or can be
government/commercial. A digital object that belong to a Cultural genre will have video, audio
and text file, where as a digital object that has Geological Survey information will have graphics
that show maps, charts and tables. An object written in particular language is more relevant to set
of population that uses that language. An object published during early 1990s may have different
software, hardware and storage media when compared to the objects published currently.
Depending on its characteristics, each digital object will have different software that is developed
to create and access the data and a different program to run this software. Thus, the installation
of no two ISOs is same. We showcase different characteristics of ISOs in Table 1. We have tried
to include all possible characteristics that we came across during the automation of the install
procedure.

Category Genre Language Publication date

Commercial Academic Chinese (PRC) 1990 -2008
Government Astronomical Chinese (Taiwan)
 Biography Czech
 Cultural English
 Database German
 Educational Hungarian
 Entertainment Japanese
 Geological Korean
 Historical Polish
 Informational Spanish
 Periodical
 Recreational

Table 1: Characteristics of ISOs**

b) Additional Software Dependence

Since ISOs have media and text files and files in many other formats, these ISOs become
dependent on the software that support these files. As discussed earlier in Exploring the ISO
section, finding additional software has been the major challenge in the research, especially in
cases where a proper documentation was not available. Few ISOs had the additional software
included in the package. In certain cases, the additional software was quite evident from the
extensions of the files. For some ISOs, the error messages gave the hint about the type of
software required. At times, we substituted software with its equivalent software. For example,
we used Adobe reader in place of Abapi reader. But not all the ISOs were of obvious case and
not all the error messages could be easily deciphered. In cases where we found the software type,
which version of software to be used was the next big question and we handled this by trial and
error method. And without the additional software it would be difficult to render the digital data
in its correct and authentic form. Table 2 includes various additional software that were installed
as per the dependence of the ISO.

Additional Software Name Version

Adobe Reader 3.0, 4.0, 5.0, 6.0, X 10.0

QuickTime 2.0.3, 3.0, 4.0, 5.0, 7.6.9, Browser Plug-In

Multimedia Tool Box mtb30

Internet Explorer 8.0.6001.18702

Microsoft Office 97, 2000, 2010

Real Audio 5.0.0.97

Table 2: Additional Software details**

The most commonly used additional software were Adobe Reader and QuickTime. To choose a
right version was not a difficult task as it is backward compatible. But to run the .mov (media)
files, it was important that we choose the appropriate version of QuickTime. QuickTime is not
backward compatible and a media file that ran on a particular version did not run on other
versions. Multimedia Tool Box (mtb30) is a media tool that is rarely used and is very difficult to
find. All the html files opened accurately on the default IE set up on Virtual Machine. Since
Microsoft Office too is backward compatible, the latest version managed to open all the .doc(x)
or .dot(x) files. But few programs were very dependent on the Office version like 97 and 2000,
and actually checked if the version was available on the operating system. If they did not find the
required version, they simply exited the installation.

c) Common Scripts and ISOs

Many ISOs require similar version of additional software, similar system settings such as freeing
virtual memory, language change and so on. We created separate scripts that handled these
special cases and embedded these scripts into the actual install scripts. We created ISO format of
additional software and used them whenever they were needed. Re-use of these ISOs and scripts
significantly reduced the time and load and increased the efficiency in scripting, we believe that
it is necessary to maintain a repository that will store these scripts and ISOs and can be used
anytime in future for creating automation scripts.

d) Non-Working/Bad ISOs

Bad ISOs were the one that did not work or had data missing on them. The ISOs were bad
because they were truncated while converting the CD-ROM to ISO image or they had specific
additional software requirements or they needed Windows operating system that operated in
DOS mode or there is a possibility that the can be errors while creating the actual software and
the software might have not run at all. The truncated ISOs have to be created again. A particular
ISO needed MS Word 97 or 2000, the issue can be resolved by providing the MS Office 97 or
2000 but Office is not a freeware tool and providing this on the baseline will cause legal
concerns. Also we have a default Office 2010 set up on our baseline; hence it will be difficult to
have two versions of Office on Virtual Machine at the same time. This issue is yet to be
addressed. Few error messages that still remain to be handled are:

1) Error while accessing the registry reinstall or repair Windows
2) NTVDM CPU error: illegal instruction

3) C:\Windows not found
4) Needs Windows 3.0 or 3.1
5) Error while parsing CGI arguments

Error message 1 can be due to password protection enabled on a .doc file and the ISO does not
have any information on the password.

The bad ISOs took significant amount of time to analyze the cause behind their improper
behavior. Despite every attempt to resolve the issues, we still have few cases that need to be
worked upon.

e) Cost in Time

Time can be the best measurement for the effort and cost involved in scripting. Other factors like
VMware, AutoIt and Virtual Machine set up are one-time cost. VMware Server and AutoIt are
freeware tools and we need a Windows XP CD to create the Virtual Machine. Many of the
additional software are available for free. We monitored the amount of time taken for each script
and recorded the same. Initially, writing the scripts took some time and with more ease in using
AutoIt the amount of time significantly reduced for subsequent scripts. The time taken to write a
script ranged from less than 5 minutes to 3 hours. All the autorun scripts took less than 5
minutes; installations in International language took more time. On an average, most scripts were
written in 20-30 minutes. If the script took more than 30 minutes of time, then this means that we
must have encountered few issues while creating the scripts. The following are the possible
reasons behind long time:

a) Installation needed specific environment settings to be changed. For example, freeing
virtual memory, changing compatibility settings

b) To find out the right version of additional software and installing the software.
c) The software was developed in International language. This needed to change the

Regional language option on the operating system and capture the window names that
were written in a foreign language.

d) README or other available documentation was in International language. We translated
the documents to English to understand the steps of installation.

e) Multiple re-starts required to complete the installations.
f) Multiple programs on the ISO needed to be installed simultaneously.
g) Installations those were lengthy and complicated.
h) Trying to decipher misleading error messages

Since there is a huge repository of digital objects, it is mandatory that the amount of time spent
on each ISO be as minimal as possible. We employed the following strategies to reduce the
amount of time taken to write the scripts and enhance the efficiency:

a) Maintain a repository of scripts and ISOs that are frequently used and re-use them
whenever needed.

b) If two ISOs have similar steps for installation, then use the same script for all those ISOs.
c) Make maximum use of the VMware facility to take Snapshots. As discussed earlier, to

install East-Asian language pack on the operating system, Windows XP CD is needed. So
install the pack on the Virtual Machine and take a snapshot.

d) Maintain an updated documentation of the installations that can be referred to in future to
handle similar issues that arise.

Results section discusses in detail about the varying time based on different criteria through
graphical notations.

f) New Configuration

After the scripting phase, we removed the AutoIt tool from the Configuration (baseline). We had
to modify the configuration to make it more suitable to meet all the requirements that we
explored while creating automation scripts. For multiple ISO scenarios, we added more number
of drives to the Virtual Machine hardware. Since few additional software, for example Adobe
Reader X, consumed more time to install, to include them on the baseline significantly reduced
the scripting and installation time. Few system settings that may not obstruct the installation of
other ISOs were also included on baseline to save time. Adding many components to the
configuration may slow down the Virtual Machine, hence we changed the configuration with
components that were mandatory and their installation made a huge difference in the installation
time. The new configuration includes:

a) Three CD drives
b) Adobe Reader X
c) International language package
d) Microsoft office (debatable)

VMware limit the number of CD drives to three. To add more than three drives remains to be
part of further research. The automation scripts are highly dependent on the drive location. To
run these scripts accurately, place the actual ISO on Drive 1 and primary additional software (if
any) on Drive 2 and secondary additional software (if any) on Drive 3.

g) New Storage

To incorporate the additional software ISOs, we also changed the layout of existing AFS storage.
We added the additional ISO to the directory of the actual ISO that needed it. The present layout
will have the actual ISO, intall.exe and the additional ISOs. Figure 2 gives the modified Virtual
archive:

Figure 2: Modified virtual Archive (this figure needs to modified to include the ISOs)

4. Results

This section will include various graphs.

IV. Testing with Emulation Assistant

In the final stage of the research, we evaluated the emulation assistant for legacy executables by
accessing the executables through emulation assistant. We had to modify emulation assistant to
add multiple ISOs to multiple drives and to mount the ISOs from the virtual archive in the
required order on the separate drives. The maximum number of executables ran perfectly fine on
the emulation assistant automating the entire process of accessing the digital objects. Only few
international ISOs were troublesome but were eventually handled.

(probably more notes on this section to be followed once we have final data ready)

** tables may need updating

